3.1449 \(\int \frac{(A+B x) \sqrt{d+e x}}{a-c x^2} \, dx\)

Optimal. Leaf size=179 \[ \frac{\left (\sqrt{a} B-A \sqrt{c}\right ) \sqrt{\sqrt{c} d-\sqrt{a} e} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{\sqrt{a} c^{5/4}}+\frac{\left (\sqrt{a} B+A \sqrt{c}\right ) \sqrt{\sqrt{a} e+\sqrt{c} d} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )}{\sqrt{a} c^{5/4}}-\frac{2 B \sqrt{d+e x}}{c} \]

[Out]

(-2*B*Sqrt[d + e*x])/c + ((Sqrt[a]*B - A*Sqrt[c])*Sqrt[Sqrt[c]*d - Sqrt[a]*e]*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/
Sqrt[Sqrt[c]*d - Sqrt[a]*e]])/(Sqrt[a]*c^(5/4)) + ((Sqrt[a]*B + A*Sqrt[c])*Sqrt[Sqrt[c]*d + Sqrt[a]*e]*ArcTanh
[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d + Sqrt[a]*e]])/(Sqrt[a]*c^(5/4))

________________________________________________________________________________________

Rubi [A]  time = 0.316903, antiderivative size = 179, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {825, 827, 1166, 208} \[ \frac{\left (\sqrt{a} B-A \sqrt{c}\right ) \sqrt{\sqrt{c} d-\sqrt{a} e} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{\sqrt{a} c^{5/4}}+\frac{\left (\sqrt{a} B+A \sqrt{c}\right ) \sqrt{\sqrt{a} e+\sqrt{c} d} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )}{\sqrt{a} c^{5/4}}-\frac{2 B \sqrt{d+e x}}{c} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*x)*Sqrt[d + e*x])/(a - c*x^2),x]

[Out]

(-2*B*Sqrt[d + e*x])/c + ((Sqrt[a]*B - A*Sqrt[c])*Sqrt[Sqrt[c]*d - Sqrt[a]*e]*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/
Sqrt[Sqrt[c]*d - Sqrt[a]*e]])/(Sqrt[a]*c^(5/4)) + ((Sqrt[a]*B + A*Sqrt[c])*Sqrt[Sqrt[c]*d + Sqrt[a]*e]*ArcTanh
[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d + Sqrt[a]*e]])/(Sqrt[a]*c^(5/4))

Rule 825

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(g*(d + e*x)^m)/
(c*m), x] + Dist[1/c, Int[((d + e*x)^(m - 1)*Simp[c*d*f - a*e*g + (g*c*d + c*e*f)*x, x])/(a + c*x^2), x], x] /
; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && FractionQ[m] && GtQ[m, 0]

Rule 827

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2, Subst[Int[(e*f
 - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(A+B x) \sqrt{d+e x}}{a-c x^2} \, dx &=-\frac{2 B \sqrt{d+e x}}{c}-\frac{\int \frac{-A c d-a B e-c (B d+A e) x}{\sqrt{d+e x} \left (a-c x^2\right )} \, dx}{c}\\ &=-\frac{2 B \sqrt{d+e x}}{c}-\frac{2 \operatorname{Subst}\left (\int \frac{c d (B d+A e)+e (-A c d-a B e)-c (B d+A e) x^2}{-c d^2+a e^2+2 c d x^2-c x^4} \, dx,x,\sqrt{d+e x}\right )}{c}\\ &=-\frac{2 B \sqrt{d+e x}}{c}+\frac{\left (\left (\sqrt{a} B+A \sqrt{c}\right ) \left (\sqrt{c} d+\sqrt{a} e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{c d+\sqrt{a} \sqrt{c} e-c x^2} \, dx,x,\sqrt{d+e x}\right )}{\sqrt{a} \sqrt{c}}+\left (-A \left (\frac{\sqrt{c} d}{\sqrt{a}}-e\right )+B \left (d-\frac{\sqrt{a} e}{\sqrt{c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{c d-\sqrt{a} \sqrt{c} e-c x^2} \, dx,x,\sqrt{d+e x}\right )\\ &=-\frac{2 B \sqrt{d+e x}}{c}+\frac{\left (\sqrt{a} B-A \sqrt{c}\right ) \sqrt{\sqrt{c} d-\sqrt{a} e} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{\sqrt{a} c^{5/4}}+\frac{\left (\sqrt{a} B+A \sqrt{c}\right ) \sqrt{\sqrt{c} d+\sqrt{a} e} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d+\sqrt{a} e}}\right )}{\sqrt{a} c^{5/4}}\\ \end{align*}

Mathematica [A]  time = 0.153715, size = 178, normalized size = 0.99 \[ \frac{-\left (A \sqrt{c}-\sqrt{a} B\right ) \sqrt{\sqrt{c} d-\sqrt{a} e} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )+\left (\sqrt{a} B+A \sqrt{c}\right ) \sqrt{\sqrt{a} e+\sqrt{c} d} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )-2 \sqrt{a} B \sqrt [4]{c} \sqrt{d+e x}}{\sqrt{a} c^{5/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*x)*Sqrt[d + e*x])/(a - c*x^2),x]

[Out]

(-2*Sqrt[a]*B*c^(1/4)*Sqrt[d + e*x] - (-(Sqrt[a]*B) + A*Sqrt[c])*Sqrt[Sqrt[c]*d - Sqrt[a]*e]*ArcTanh[(c^(1/4)*
Sqrt[d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[a]*e]] + (Sqrt[a]*B + A*Sqrt[c])*Sqrt[Sqrt[c]*d + Sqrt[a]*e]*ArcTanh[(c^(
1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d + Sqrt[a]*e]])/(Sqrt[a]*c^(5/4))

________________________________________________________________________________________

Maple [B]  time = 0.025, size = 427, normalized size = 2.4 \begin{align*} -2\,{\frac{B\sqrt{ex+d}}{c}}+{Acde{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}}+{aB{e}^{2}{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}}+{Ae{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}}+{Bd{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}}+{Acde\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}}+{aB{e}^{2}\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}}-{Ae\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}}-{Bd\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)*(e*x+d)^(1/2)/(-c*x^2+a),x)

[Out]

-2*B*(e*x+d)^(1/2)/c+1/(a*c*e^2)^(1/2)/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(a*c*e^2)
^(1/2))*c)^(1/2))*A*c*d*e+1/(a*c*e^2)^(1/2)/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(a*c
*e^2)^(1/2))*c)^(1/2))*a*B*e^2+1/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(a*c*e^2)^(1/2)
)*c)^(1/2))*A*e+1/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(a*c*e^2)^(1/2))*c)^(1/2))*B*d
+1/(a*c*e^2)^(1/2)/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2))*A
*c*d*e+1/(a*c*e^2)^(1/2)/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((-c*d+(a*c*e^2)^(1/2))*c)^(1
/2))*a*B*e^2-1/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2))*A*e-1
/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2))*B*d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{{\left (B x + A\right )} \sqrt{e x + d}}{c x^{2} - a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)^(1/2)/(-c*x^2+a),x, algorithm="maxima")

[Out]

-integrate((B*x + A)*sqrt(e*x + d)/(c*x^2 - a), x)

________________________________________________________________________________________

Fricas [B]  time = 2.30622, size = 3116, normalized size = 17.41 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)^(1/2)/(-c*x^2+a),x, algorithm="fricas")

[Out]

-1/2*(c*sqrt((2*A*B*a*e + a*c^2*sqrt((4*A^2*B^2*c^2*d^2 + 4*(A*B^3*a*c + A^3*B*c^2)*d*e + (B^4*a^2 + 2*A^2*B^2
*a*c + A^4*c^2)*e^2)/(a*c^5)) + (B^2*a + A^2*c)*d)/(a*c^2))*log(-(2*(A*B^3*a*c - A^3*B*c^2)*d + (B^4*a^2 - A^4
*c^2)*e)*sqrt(e*x + d) + (2*A*B^2*a*c^2*d - A*a*c^4*sqrt((4*A^2*B^2*c^2*d^2 + 4*(A*B^3*a*c + A^3*B*c^2)*d*e +
(B^4*a^2 + 2*A^2*B^2*a*c + A^4*c^2)*e^2)/(a*c^5)) + (B^3*a^2*c + A^2*B*a*c^2)*e)*sqrt((2*A*B*a*e + a*c^2*sqrt(
(4*A^2*B^2*c^2*d^2 + 4*(A*B^3*a*c + A^3*B*c^2)*d*e + (B^4*a^2 + 2*A^2*B^2*a*c + A^4*c^2)*e^2)/(a*c^5)) + (B^2*
a + A^2*c)*d)/(a*c^2))) - c*sqrt((2*A*B*a*e + a*c^2*sqrt((4*A^2*B^2*c^2*d^2 + 4*(A*B^3*a*c + A^3*B*c^2)*d*e +
(B^4*a^2 + 2*A^2*B^2*a*c + A^4*c^2)*e^2)/(a*c^5)) + (B^2*a + A^2*c)*d)/(a*c^2))*log(-(2*(A*B^3*a*c - A^3*B*c^2
)*d + (B^4*a^2 - A^4*c^2)*e)*sqrt(e*x + d) - (2*A*B^2*a*c^2*d - A*a*c^4*sqrt((4*A^2*B^2*c^2*d^2 + 4*(A*B^3*a*c
 + A^3*B*c^2)*d*e + (B^4*a^2 + 2*A^2*B^2*a*c + A^4*c^2)*e^2)/(a*c^5)) + (B^3*a^2*c + A^2*B*a*c^2)*e)*sqrt((2*A
*B*a*e + a*c^2*sqrt((4*A^2*B^2*c^2*d^2 + 4*(A*B^3*a*c + A^3*B*c^2)*d*e + (B^4*a^2 + 2*A^2*B^2*a*c + A^4*c^2)*e
^2)/(a*c^5)) + (B^2*a + A^2*c)*d)/(a*c^2))) + c*sqrt((2*A*B*a*e - a*c^2*sqrt((4*A^2*B^2*c^2*d^2 + 4*(A*B^3*a*c
 + A^3*B*c^2)*d*e + (B^4*a^2 + 2*A^2*B^2*a*c + A^4*c^2)*e^2)/(a*c^5)) + (B^2*a + A^2*c)*d)/(a*c^2))*log(-(2*(A
*B^3*a*c - A^3*B*c^2)*d + (B^4*a^2 - A^4*c^2)*e)*sqrt(e*x + d) + (2*A*B^2*a*c^2*d + A*a*c^4*sqrt((4*A^2*B^2*c^
2*d^2 + 4*(A*B^3*a*c + A^3*B*c^2)*d*e + (B^4*a^2 + 2*A^2*B^2*a*c + A^4*c^2)*e^2)/(a*c^5)) + (B^3*a^2*c + A^2*B
*a*c^2)*e)*sqrt((2*A*B*a*e - a*c^2*sqrt((4*A^2*B^2*c^2*d^2 + 4*(A*B^3*a*c + A^3*B*c^2)*d*e + (B^4*a^2 + 2*A^2*
B^2*a*c + A^4*c^2)*e^2)/(a*c^5)) + (B^2*a + A^2*c)*d)/(a*c^2))) - c*sqrt((2*A*B*a*e - a*c^2*sqrt((4*A^2*B^2*c^
2*d^2 + 4*(A*B^3*a*c + A^3*B*c^2)*d*e + (B^4*a^2 + 2*A^2*B^2*a*c + A^4*c^2)*e^2)/(a*c^5)) + (B^2*a + A^2*c)*d)
/(a*c^2))*log(-(2*(A*B^3*a*c - A^3*B*c^2)*d + (B^4*a^2 - A^4*c^2)*e)*sqrt(e*x + d) - (2*A*B^2*a*c^2*d + A*a*c^
4*sqrt((4*A^2*B^2*c^2*d^2 + 4*(A*B^3*a*c + A^3*B*c^2)*d*e + (B^4*a^2 + 2*A^2*B^2*a*c + A^4*c^2)*e^2)/(a*c^5))
+ (B^3*a^2*c + A^2*B*a*c^2)*e)*sqrt((2*A*B*a*e - a*c^2*sqrt((4*A^2*B^2*c^2*d^2 + 4*(A*B^3*a*c + A^3*B*c^2)*d*e
 + (B^4*a^2 + 2*A^2*B^2*a*c + A^4*c^2)*e^2)/(a*c^5)) + (B^2*a + A^2*c)*d)/(a*c^2))) + 4*sqrt(e*x + d)*B)/c

________________________________________________________________________________________

Sympy [B]  time = 20.0955, size = 396, normalized size = 2.21 \begin{align*} - 2 A e \operatorname{RootSum}{\left (256 t^{4} a^{2} c^{3} e^{4} - 32 t^{2} a c^{2} d e^{2} - a e^{2} + c d^{2}, \left ( t \mapsto t \log{\left (- 64 t^{3} a c^{2} e^{2} + 4 t c d + \sqrt{d + e x} \right )} \right )\right )} - \frac{2 B a e^{2} \operatorname{RootSum}{\left (t^{4} \left (256 a^{3} c e^{6} - 256 a^{2} c^{2} d^{2} e^{4}\right ) + 32 t^{2} a c d e^{2} - 1, \left ( t \mapsto t \log{\left (- 64 t^{3} a^{2} c d e^{4} + 64 t^{3} a c^{2} d^{3} e^{2} - 4 t a e^{2} - 4 t c d^{2} + \sqrt{d + e x} \right )} \right )\right )}}{c} + 2 B d^{2} \operatorname{RootSum}{\left (t^{4} \left (256 a^{3} c e^{6} - 256 a^{2} c^{2} d^{2} e^{4}\right ) + 32 t^{2} a c d e^{2} - 1, \left ( t \mapsto t \log{\left (- 64 t^{3} a^{2} c d e^{4} + 64 t^{3} a c^{2} d^{3} e^{2} - 4 t a e^{2} - 4 t c d^{2} + \sqrt{d + e x} \right )} \right )\right )} - 2 B d \operatorname{RootSum}{\left (256 t^{4} a^{2} c^{3} e^{4} - 32 t^{2} a c^{2} d e^{2} - a e^{2} + c d^{2}, \left ( t \mapsto t \log{\left (- 64 t^{3} a c^{2} e^{2} + 4 t c d + \sqrt{d + e x} \right )} \right )\right )} - \frac{2 B \sqrt{d + e x}}{c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)**(1/2)/(-c*x**2+a),x)

[Out]

-2*A*e*RootSum(256*_t**4*a**2*c**3*e**4 - 32*_t**2*a*c**2*d*e**2 - a*e**2 + c*d**2, Lambda(_t, _t*log(-64*_t**
3*a*c**2*e**2 + 4*_t*c*d + sqrt(d + e*x)))) - 2*B*a*e**2*RootSum(_t**4*(256*a**3*c*e**6 - 256*a**2*c**2*d**2*e
**4) + 32*_t**2*a*c*d*e**2 - 1, Lambda(_t, _t*log(-64*_t**3*a**2*c*d*e**4 + 64*_t**3*a*c**2*d**3*e**2 - 4*_t*a
*e**2 - 4*_t*c*d**2 + sqrt(d + e*x))))/c + 2*B*d**2*RootSum(_t**4*(256*a**3*c*e**6 - 256*a**2*c**2*d**2*e**4)
+ 32*_t**2*a*c*d*e**2 - 1, Lambda(_t, _t*log(-64*_t**3*a**2*c*d*e**4 + 64*_t**3*a*c**2*d**3*e**2 - 4*_t*a*e**2
 - 4*_t*c*d**2 + sqrt(d + e*x)))) - 2*B*d*RootSum(256*_t**4*a**2*c**3*e**4 - 32*_t**2*a*c**2*d*e**2 - a*e**2 +
 c*d**2, Lambda(_t, _t*log(-64*_t**3*a*c**2*e**2 + 4*_t*c*d + sqrt(d + e*x)))) - 2*B*sqrt(d + e*x)/c

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)^(1/2)/(-c*x^2+a),x, algorithm="giac")

[Out]

Timed out